xxxxxxxxxx
an adversarial search agent implementing minimax algorithm but that keeps into
consideration the presence of multiple adversarial agents (ghosts)
xxxxxxxxxx
// A simple C++ program to find
// maximum score that
// maximizing player can get.
#include<bits/stdc++.h>
using namespace std;
// Returns the optimal value a maximizer can obtain.
// depth is current depth in game tree.
// nodeIndex is index of current node in scores[].
// isMax is true if current move is
// of maximizer, else false
// scores[] stores leaves of Game tree.
// h is maximum height of Game tree
int minimax(int depth, int nodeIndex, bool isMax,
int scores[], int h)
{
// Terminating condition. i.e
// leaf node is reached
if (depth == h)
return scores[nodeIndex];
// If current move is maximizer,
// find the maximum attainable
// value
if (isMax)
return max(minimax(depth+1, nodeIndex*2, false, scores, h),
minimax(depth+1, nodeIndex*2 + 1, false, scores, h));
// Else (If current move is Minimizer), find the minimum
// attainable value
else
return min(minimax(depth+1, nodeIndex*2, true, scores, h),
minimax(depth+1, nodeIndex*2 + 1, true, scores, h));
}
// A utility function to find Log n in base 2
int log2(int n)
{
return (n==1)? 0 : 1 + log2(n/2);
}
// Driver code
int main()
{
// The number of elements in scores must be
// a power of 2.
int scores[] = {3, 5, 2, 9, 12, 5, 23, 23};
int n = sizeof(scores)/sizeof(scores[0]);
int h = log2(n);
int res = minimax(0, 0, true, scores, h);
cout << "The optimal value is : " << res << endl;
return 0;
}