import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import statsmodels.api as sm
from statsmodels.base.model import GenericLikelihoodModel
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
# Generate synthetic data
np.random.seed(0)
x_data = np.linspace(0, 4, 50)
y_data = 2.5 * np.exp(-1.3 * x_data) + 0.5 + 0.2 * np.random.normal(size=len(x_data))
x_data_reshaped = x_data[:, np.newaxis] # For sklearn
# 1. Using scipy.optimize.curve_fit
def model(x, a, b, c):
return a * np.exp(-b * x) + c
popt, pcov = curve_fit(model, x_data, y_data)
image.mefiz.com
# 2. Using statsmodels
class NonLinearModel(GenericLikelihoodModel):
def __init__(self, endog, exog, **kwargs):
super(NonLinearModel, self).__init__(endog, exog, **kwargs)
def nloglikeobs(self, params):
a, b, c = params
y_pred = a * np.exp(-b * self.exog) + c
resid = self.endog - y_pred
return 0.5 * (resid ** 2)
def fit(self, start_params=None, maxiter=10000, method='nm', **kwargs):
if start_params is None:
start_params = np.array([1.0, 1.0, 1.0])
return super(NonLinearModel, self).fit(start_params=start_params, maxiter=maxiter, method=method, **kwargs)
nlm = NonLinearModel(y_data, x_data)
result = nlm.fit()
# 3. Using sklearn with Polynomial Features
degree = 4
poly_model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
poly_model.fit(x_data_reshaped, y_data)
# Plot results
plt.figure(figsize=(12, 8))
# Original Data
plt.scatter(x_data, y_data, label='Data', color='blue')
# scipy.optimize.curve_fit
plt.plot(x_data, model(x_data, *popt), label='scipy.optimize.curve_fit', color='red')
# statsmodels
plt.plot(x_data, result.predict(x_data), label='statsmodels', color='green')
# sklearn Polynomial Regression
plt.plot(x_data, poly_model.predict(x_data_reshaped), label='sklearn Polynomial Regression', color='purple')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Non-linear Regression using different methods')
plt.show()