xxxxxxxxxx
new_predicted_result_GWT2180 = pytesseract.image_to_string(gaussian_blur_license_plate, lang ='eng',
config ='--oem 3 -l eng --psm 6 -c tessedit_char_whitelist = ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
filter_new_predicted_result_GWT2180 = "".join(new_predicted_result_GWT2180.split()).replace(":", "").replace("-", "")
print(filter_new_predicted_result_GWT2180)
xxxxxxxxxx
# specify path to the license plate images folder as shown below
path_for_license_plates = os.getcwd() + "/license-plates/**/*.jpg"
list_license_plates = []
predicted_license_plates = []
for path_to_license_plate in glob.glob(path_for_license_plates, recursive = True):
license_plate_file = path_to_license_plate.split("/")[-1]
license_plate, _ = os.path.splitext(license_plate_file)
'''
Here we append the actual license plate to a list
'''
list_license_plates.append(license_plate)
'''
Read each license plate image file using openCV
'''
img = cv2.imread(path_to_license_plate)
'''
We then pass each license plate image file
to the Tesseract OCR engine using the Python library
wrapper for it. We get back predicted_result for
license plate. We append the predicted_result in a
list and compare it with the original the license plate
'''
predicted_result = pytesseract.image_to_string(img, lang ='eng',
config ='--oem 3 --psm 6 -c tessedit_char_whitelist = ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
filter_predicted_result = "".join(predicted_result.split()).replace(":", "").replace("-", "")
predicted_license_plates.append(filter_predicted_result)
xxxxxxxxxx
print("Actual License Plate", "\t", "Predicted License Plate", "\t", "Accuracy")
print("--------------------", "\t", "-----------------------", "\t", "--------")
def calculate_predicted_accuracy(actual_list, predicted_list):
for actual_plate, predict_plate in zip(actual_list, predicted_list):
accuracy = "0 %"
num_matches = 0
if actual_plate == predict_plate:
accuracy = "100 %"
else:
if len(actual_plate) == len(predict_plate):
for a, p in zip(actual_plate, predict_plate):
if a == p:
num_matches += 1
accuracy = str(round((num_matches / len(actual_plate)), 2) * 100)
accuracy += "%"
print(" ", actual_plate, "\t\t\t", predict_plate, "\t\t ", accuracy)
calculate_predicted_accuracy(list_license_plates, predicted_license_plates)
xxxxxxxxxx
# Read the license plate file and display it
test_license_plate = cv2.imread(os.getcwd() + "/license-plates / GWT2180.jpg")
plt.imshow(test_license_plate)
plt.axis('off')
plt.title('GWT2180 license plate')
xxxxxxxxxx
resize_test_license_plate = cv2.resize(
test_license_plate, None, fx = 2, fy = 2,
interpolation = cv2.INTER_CUBIC)
xxxxxxxxxx
grayscale_resize_test_license_plate = cv2.cvtColor(
resize_test_license_plate, cv2.COLOR_BGR2GRAY)
xxxxxxxxxx
gaussian_blur_license_plate = cv2.GaussianBlur(
grayscale_resize_test_license_plate, (5, 5), 0)