xxxxxxxxxx
import numpy as np
from tensorflow.keras import utils
from tensorflow.keras.datasets import cifar10
from tensorflow.keras import layers, models
# Load the CIFAR-10 dataset
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
# Normalize pixel values between 0 and 1
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
# Convert labels to one-hot encoding
num_classes = 10
train_labels = utils.to_categorical(train_labels, num_classes)
test_labels = utils.to_categorical(test_labels, num_classes)
# Define the CNN model
model = models.Sequential([
# Convolutional layers
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
# Fully connected layers
layers.Dense(64, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
# Train the model
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
# Evaluate the model
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
xxxxxxxxxx
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.datasets import cifar10
from tensorflow.keras import utils
# Load the CIFAR-10 dataset
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
# Normalize pixel values between 0 and 1
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
# Convert labels to one-hot encoding
num_classes = 10
train_labels = utils.to_categorical(train_labels, num_classes)
test_labels = utils.to_categorical(test_labels, num_classes)
# Define the CNN model
model = tf.keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
# Train the model
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
# Evaluate the model
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)