import keras
from keras.models import Sequential
from keras.layers import Dense
# Get number of predictor columns
n_cols = df.shape[1]
# define the neural network model
model = Sequential()
model.add(Dense(5, activation='relu', input_shape=(n_cols,)))
model.add(Dense(5, activation='relu'))
model.add(Dense(1, activation='linear'))
# compile the model
model.compile(loss='mean_squared_error', optimizer='adam')
# train the model
model.fit(X_Train, y_train, epochs=50, batch_size=10, verbose=0)
# evaluate the model
loss = model.evaluate(X_Train, y_train)
print('Mean Squared Error:', loss)
# predict
predictions = model.predict(X_Test)