import h3
import pandas as pd
from shapely import geometry
from shapely.geometry import Polygon, MultiPolygon
import plotly.express as px
import pyspark.sql.functions as func
# function to plot a single field of hexes, and use a column as the coloration to visualize the fields distribution
def plot_field_op_labelled_hexes(df, operation_guid, operation_col='FieldOperationGuid', hex_col='hex_index_L12',
col_to_color=None, title=None, color_scale='rdylgn', mapbox='open-street-map'):
# filter pyspark df to just desired op
df = df.where(func.col(operation_col).eqNullSafe(operation_guid))
# convert from pyspark to pandas
df = df.toPandas()
# get list of all hex ids
hex_list = df[hex_col]
# use h3 to geo boundary to get a geojson polygon list
polygon_list = [[hex_index, Polygon(h3.h3_to_geo_boundary(hex_index, geo_json=True))] for hex_index in hex_list]
# make dict
geo_dict = {}
# fill dictionary with polygon list vals
geo_dict["type"] = "FeatureCollection"
geo_dict["features"] = [{"type": "Feature", 'properties': {'hex_index_L12': a[0]}, "geometry": a[1]} for a in
[[b[0], geometry.mapping(b[1])] for b in polygon_list]]
for i, x in enumerate(geo_dict['features']):
x['id'] = i
# set center of field
center = polygon_list[0][1].centroid.wkt.replace('(', '').replace(')', '').split(' ')[1:]
# plot op using choropleth mapbox
fig = px.choropleth_mapbox(df, geojson=geo_dict, locations=hex_col, color=col_to_color, hover_data=[col_to_color],
hover_name=hex_col, featureidkey="properties.hex_index_L12",
mapbox_style=mapbox,
zoom=15, center={"lat": float(center[1]), "lon": float(center[0])},
opacity=0.8,
title=title,
color_continuous_scale=color_scale,
height=1000,
width=1000)
# show plot
fig.show()