xxxxxxxxxx
const factorial = function fac(n) {
return n < 2 ? 1 : n * fac(n - 1);
}
console.log(factorial(3))
xxxxxxxxxx
// FACTORIAL
// 5! = 5 * 4 *3 * 2 *1 = 120
// With recursion
const fact = (n) => {
if (n == 0) {
return 1;
}
else {
return n * fact(n - 1);
}
}
console.log(fact(5))
// with forloop
// FACTORIAL
// 5! = 5 * 4 *3 * 2 *1 = 120
const number = 5;
let fact =1 ;
for(let i=number;i>=1;i--)
{
console.log(i)
fact = fact * i;
}
console.log("FACTORIAL is :: ",fact);
xxxxxxxxxx
public static void factorial(int num){
if(num<=0)
return 1;
return num * factorial(num-1);
}
xxxxxxxxxx
unsigned long long factorial(unsigned long long num){
if(num<=0)
return 1;
return num * factorial(num-1);
}
xxxxxxxxxx
function factorial (n){
j = 1;
for(i=1;i<=n;i++){
j = j*i;
}
return j;
}
xxxxxxxxxx
public int factorial(int n) {
// Base Case
if (n == 0 || n == 1) {
return 1;
} else {
// Recursive Case
int smallerFactorial = factorial(n - 1); // Calculate (n-1)!
int result = n * smallerFactorial; // Calculate n! based on (n-1)!
return result;
}
}
xxxxxxxxxx
def factorial(n):
if n == 0 or n == 1:
return 1
else:
return n * factorial(n - 1)
xxxxxxxxxx
import java.util.Scanner;
public class Factorial {
public static void main(String[] args) {
Scanner userInput = new Scanner(System.in);
int n = userInput.nextInt();
int a = 1;
for (int i = 1; i <= n; i++) {
a *= i;
}
System.out.println(a);
}
}
xxxxxxxxxx
def factorial(n):
fac = []
fac.append(1)
fac.append(1)
for x in range(2, n):
y = x * fac[x-1]
fac.append(y)
return fac[n-1]
xxxxxxxxxx
#include<stdio.h>
// function prototype declarations
long factorial(int);
long find_npr(int, int);
long find_ncr(int, int);
int main()
{
printf("\n\n\t\tStudytonight - Best place to learn\n\n\n");
int n, r;
long npr, ncr;
printf("Enter the value of n and r respectively: \n\n");
scanf("%d%d", &n, &r);
// function calls
npr = find_npr(n, r);
ncr = find_ncr(n, r);
printf("\n\n\n\t\t%dC%d = %ld\n", n, r, ncr);
printf("\n\n\t\t%dP%d = %ld\n", n, r, npr);
printf("\n\n\t\t\tCoding is Fun !\n\n\n");
return 0;
}
/*
function definition for nCr
*/
long find_ncr(int a, int b)
{
return (factorial(a)/(factorial(b)*factorial(a-b)));
}
/*
function definition for nPr
*/
long find_npr(int a, int b)
{
return (factorial(a)/factorial(a-b));
}
/*
recursive function definition for finding
factorial of a number
*/
long factorial(int c)
{
if(c == 1 || c == 0)
return 1;
else
return c*factorial(c-1);
}