xxxxxxxxxx
import pandas as pd
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
df['c'] = df.apply(lambda row: row.a + row.b, axis=1)
df
# a b c
# 0 1 3 4
# 1 2 4 6
xxxxxxxxxx
#using the insert function:
df.insert(location, column_name, list_of_values)
#example
df.insert(0, 'new_column', ['a','b','c'])
#explanation:
#put "new_column" as first column of the dataframe
#and puts 'a','b' and 'c' as values
#using array access:
df['new_column_name'] = value
xxxxxxxxxx
# pre 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].values
# >= 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
xxxxxxxxxx
# pre 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].values
# >= 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
xxxxxxxxxx
merge(left, right, how='left', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True)
xxxxxxxxxx
# import pandas library
import pandas as pd
# create pandas DataFrame
df = pd.DataFrame({'team': ['India', 'South Africa', 'New Zealand', 'England'],
'points': [10, 8, 3, 5],
'runrate': [0.5, 1.4, 2, -0.6],
'wins': [5, 4, 2, 2]})
# print the DataFrame
print(df)
# insert the new column at the specific position
df.insert(3, "lost", [2, 1, 3, 4], True)
# Print the new DataFrame
print(df)
xxxxxxxxxx
# Import pandas package
import pandas as pd
# Define a dictionary containing Students data
data = {'Name': ['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Height': [5.1, 6.2, 5.1, 5.2],
'Qualification': ['Msc', 'MA', 'Msc', 'Msc']}
# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
# Declare a list that is to be converted into a column
address = ['Delhi', 'Bangalore', 'Chennai', 'Patna']
# Using 'Address' as the column name
# and equating it to the list
df['Address'] = address
# Observe the result
print(df)