xxxxxxxxxx
concat = pd.merge(data_1, data_2, how='inner')
xxxxxxxxxx
import pandas as pd
# Drop all duplicates in the DataFrame
df = df.drop_duplicates()
# Drop all duplicates in a specific column of the DataFrame
df = df.drop_duplicates(subset = "column")
# Drop all duplicate pairs in DataFrame
df = df.drop_duplicates(subset = ["column", "column2"])
# Display DataFrame
print(df)
xxxxxxxxxx
# Remove by index
df = df[df.index.duplicated(keep='first')]
# Other methods to remove duplicates
import pandas as pd
df = df.drop_duplicates()
df = df.drop_duplicates(subset = "column")
df = df.drop_duplicates(subset = ["column", "column2"])
xxxxxxxxxx
# If same dataset needs to be updated:
df.drop_duplicates(keep=False, inplace=True)
xxxxxxxxxx
#Create test data
df1 = pd.DataFrame(np.random.randint(100,size=(1000, 3)),columns=['A','B','C'])
df2 = pd.DataFrame(np.random.randint(100,size=(1000, 3)),columns=['B','C','D'])
pd.merge(df1, df2, how='inner', left_on=['B','C'], right_on=['B','C'])
xxxxxxxxxx
df = df.loc[:,~df.columns.duplicated()].copy()
# https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns
xxxxxxxxxx
import pandas as pd
import numpy as np
data = {'column1': [1, 2, 2, np.nan, 4],
'column2': ['a', 'b', 'b', 'c', 'd']}
df1 = df2 = df3 = pd.DataFrame(data)
# Remove all duplicates inplace
df1.drop_duplicates(inplace=True)
print(df1,"\n")
# Remove duplicates in one column inplace
df2.drop_duplicates(subset="column1", inplace=True)
print(df2,"\n")
# Remove duplicates in multiple columns inplace
df3.drop_duplicates(subset=["column1", "column2"], inplace=True)
print(df3)