xxxxxxxxxx
In [36]:
df['Group'] = df['Group'].map(df1.set_index('Group')['Hotel'])
df
Out[36]:
Date Group Family Bonus
0 2011-06-09 Jamel Laavin 456
1 2011-07-09 Frank Grendy 679
2 2011-09-10 Luxy Fantol 431
3 2011-11-02 Frank Gondow 569
xxxxxxxxxx
# Replace missing values
df["col"].replace(np.nan, new_val)
# Replace other values
df["col"].str.replace('old','new')
# Replace using masking
df.loc[df['col']=='old', 'col'] = 'new'
# Replace all specified value in the dataframe
df_replaced = df.replace(1, 0)
xxxxxxxxxx
### replace one value ###
df["column"].replace("US","UK") # you can also use numerical values
### replace more than one value ###
df["column"].replace(["man","woman","child"],[1,2,3]) # you can also use numerical values
# man ==> 1
# woman ==> 2
# child ==> 3
xxxxxxxxxx
# replace() syntax
DataFrame.replace(to_replace="<the_value_you_want_to_replace>", value="<new_value_for_input>", inplace=False, limit=None, regex=False, method='pad')
xxxxxxxxxx
df.loc[df.ID == 103, ['FirstName', 'LastName']] = 'Matt', 'Jones'
//or
import pandas
df = pandas.read_csv("test.csv")
df.loc[df.ID == 103, 'FirstName'] = "Matt"
df.loc[df.ID == 103, 'LastName'] = "Jones"