xxxxxxxxxx
a = a[~(np.isnan(a).any(axis=1))] # removes rows containing at least one nan
a = a[~(np.isnan(a).all(axis=1))] # removes rows containing all nan
xxxxxxxxxx
df.dropna() #drop all rows that have any NaN values
df.dropna(how='all')
xxxxxxxxxx
import pandas as pd
df = pd.DataFrame({'values_1': ['700','ABC','500','XYZ','1200'],
'values_2': ['DDD','150','350','400','5000']
})
df = df.apply (pd.to_numeric, errors='coerce')
df = df.dropna()
df = df.reset_index(drop=True)
print (df)